home *** CD-ROM | disk | FTP | other *** search
/ 800 College Boards / 800 College Boards.iso / cbrd56 / cbb < prev    next >
Text File  |  1984-07-30  |  10KB  |  1 lines

  1.                                         C. Parallel Lines                            (AB||CD)                                                                                                           NOTE: < = Angle                               ^ = Degrees                                                               Make sure you know these theorems,      definitions and assumptions.            :RA                                     :SB                                     :SH11311   3                            :SH09332                                :SH13334                                :SP196052259116259116259116             :SP259052196116196116196116             :SF                                     1. If two straight lines intersect, the pairs of opposite angles formed are     called vertical angles and are equal.   The pairs of adjacent angles are        supplementary and equal 180^.                                                   Vertical Angles:                                                                     angle <1 = <3                                 <2 = <4                                                              Supplementary Angles:                                                                 <1 + <2 = 180^                          <2 + <3 = 180^                          <3 + <4 = 180^                          <4 + <1 = 180^                    :RA                                     :SD                                     :SB                                     :SH0927l                                :SH1327m                                :SH08361  2                             :SH10334   3                            :SH12315  6                             :SH14298  7                             :SP193068266068266068266068             :SP193100266100266100266100             :SP265050196120196120196120             :SF                                     2. If two straight lines are parallel   (never meeting) and are cut by a        transversal (a line that touches each   of the parallel lines):                                                         a. the pairs of alternate               interior angles are equal;                                                      b. the pairs of                         corresponding angles                    are equal;                                                                      c. the pairs of interior                angles on the same side                 of the transversal are                  supplementary.                          :RA                                     If line l is parallel to line m:                                                a. Alternate interior angles                                                         <3 = <5                                 <4 = <6                                                                    b. Corresponding angles                                                              <1 = <5                                 <4 = <8                                 <2 = <6                                 <3 = <7                                                                    c. Interior angles on                      the same side of                        the transversal                                                                 <4 + <5 = 180^                          <3 + <6 = 180^                       :RA                                     Notice that there are many pairs of     vertical angles and supplementary       angles.                                                                         Vertical Angles                                                                    <1 = <3                                 <2 = <4                                 <5 = <7                                 <6 = <8                                                                      Supplementary Angles                                                            <1+<2 = 180^  <5+<6 = 180^              <2+<3 = 180^  <6+<7 = 180^              <3+<4 = 180^  <7+<8 = 180^              <4+<1 = 180^  <8+<5 = 180^              :RA                                     :SD                                     :Q                                      :SB                                     :SP198028264028264028264028             :SP198070264070264070264070             :SP244012217082217082217082             :SH0428A                                :SH0439B                                :SH0928C                                :SH0939D                                :SH0236E                                :SH1133F                                :SH0533a                                :SH0834b                                :SH0336c                                :SH0535d                                :SH1031e                                :SF                                     1. If <d = 150^ and                     AB||CD, find the number                 of degrees in <e.                                                               (a) 30  (b) 60  (c) 150                                                         (d) 180 (e) It cannot be                determined from the                     information given.                      :RCA                                    1. (a) 30 Ans.                                                                  Because <a and <d                       are supplementary                                                               <a = 180^ - <d                                                                  <a =  30^                                                                       <a and <e are                           corresponding angles                    and therefore equal                                                             <e = <a = 30^ Ans.                      :RA                                     :Q                                      2. Given: <a = 3y + 5^,                 <b = 2y + 11^. Find the                 number of degrees in <a.                                                        (a) 6  (b) 16  (c) 23                                                           (d) 43  (e) 0                           :RCC                                    2. (c) 23 Ans.                                                                  Since <a and <b are                     alternate interior                      angles,                                                                              <a = <b                                                                     3y + 5 = 2y + 11                                                                     y = 6^                                                                          a = 3 (6^) + 5^                                                                   = 23^ Ans.                      :RA                                     :Q                                      3. Angle b = 4m^ and                    angle d = 5m^. Find the                 value of m.                                                                     (a) 10  (b) 20  (c) 40                                                          (d) 50  (e) 80                          :RCB                                    3. (b) 20 Ans.                                                                  Angle b and <d are                      interior angles on                      the same side of the                    transversal and                         therefore total 180^                                                              4m^ + 5m^ = 180^                                                                       m  =  20^ Ans.                 :RA                                     :SD                                     :Q                                      :SB                                     :SH0528A           B                    :SH0828C           D                    :SH0434y                                :SH0932140^                             :SP198036275036275036275036             :SP198060275060275060275060             :SP252024203072203072203072             :SF                                     4. AB || CD. Find the number of degrees in angle y.                                                                     (a) 40  (b) 50  (c) 90                                                          (d) 140  (e) 180                        :RCD                                    4. (d) 140 Ans.                                                                 y is a corresponding                    angle to the vertical                   angle equal to 140^                     and is therefore also                   equal to 140^ Ans.                      :RA                                     :SD                                     :Q                                      :SB                                     :SH0427A     x     B                    :SH0627C           D                    :SH0827E    G                           :SH0234F    H                           :SH0734y                                :SP189032266032266032266032             :SP189047266047266047266047             :SP231016189056189056189056             :SP266016224056224056224056             :SF                                     5. AB || CD, and EF || GH and <x = 30.  Find the number of                      degrees in angle y.                                                             (a) 30  (b) 60  (c) 90                                                          (d) 150  (e) 180                        :RCD                                    5. (d) 150 Ans.                                                                 y is a corresponding                    angle to the                            supplementary angle                     equal to 30^ therefore:                                                            y + 30^ = 180^                                                                        y =  150^ Ans.                 :SD                                     :ET                                     :ET